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Abstract
By confining a binary mixture, one can profoundly alter its miscibility
behaviour. The qualitative features of miscibility in confined geometry are
rather universal and are shared by polymer mixtures as well as small molecules,
but the unmixing transition in the bulk and the wetting transition are typically
well separated in polymer blends. We study the interplay between wetting
and miscibility of a symmetric polymer mixture via large scale Monte Carlo
simulations in the framework of the bond fluctuation model and via numerical
self-consistent field calculations. The film surfaces interact with the monomers
via short-ranged potentials, and the wetting transition of the semi-infinite system
is of first order. It can be accurately located in the simulations by measuring
the surface and interface tensions and using Young’s equation.

If both surfaces in a film attract the same component, capillary condensation
occurs and the critical point is close to the critical point of the bulk. If surfaces
attract different components, an interface localization/delocalization occurs
which gives rise to phase diagrams with two critical points in the vicinity of the
pre-wetting critical point of the semi-infinite system. The crossover between
these two types of phase diagrams as a function of the surface field asymmetry
is studied.

We investigate the dependence of the phase diagram on the film width
� for antisymmetric surface fields. Upon decreasing the film width the
two critical points approach the symmetry axis of the phase diagram, and
below a certain width, �tri, there remains only a single critical point
at symmetric composition. This corresponds to a second order interface
localization/delocalization transition even though the wetting transition is of
first order. At a specific film width, �tri, tricritical behaviour is found.

The behaviour of antisymmetric films is compared with the phase behaviour
in an antisymmetric double wedge. While the former is the analogy of the
wetting transition of a planar surface, the latter is the analogy of the filling
behaviour of a single wedge. We present evidence for a second order interface
localization/delocalization transition in an antisymmetric double wedge and
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relate its unconventional critical behaviour to the predictions of Parry et al
(1999 Phys. Rev. Lett. 83 5535) for wedge filling. The critical behaviour differs
from the Ising universality class and is characterized by strong anisotropic
fluctuations. We present evidence that the transition in large double wedges
can be of second order although there is a first order wetting transition on a
planar substrate.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

By confining a binary mixture, one can profoundly alter its miscibility behaviour [1–7]. The
phase behaviour of AB mixtures in pores, slits and films has attracted abiding interest from both
theorists and experimentalists [6, 8, 9] alike. For instance, thin polymer films find application
in optical lithography used in semiconductor industry. For this specific application polymer
bilayers [10, 11], consisting of a thin top-layer (several 10 nm) on a sub-layer,are prepared. The
wetting behaviour of the thin film on the sub-layer is of crucial importance for the development
of polymer structures after light exposure. We study the interplay between (pre-)wetting and
equilibrium phase behaviour by self-consistent field (SCF) theory [12, 13] and Monte Carlo
(MC) simulations [14–16]. In particular, we focus on situations where the surfaces attract
different components of the mixture.

The qualitative features of the miscibility in confined geometry are rather universal and
are shared by polymer mixtures as well as small molecules. Symmetric binary polymer blends
are, however, particularly well suited to study the interplay between wetting and miscibility:

(i) The wetting transition temperature typically is much lower than the critical temperature,
where demixing occurs in the bulk [14].

(ii) Fluctuations can be controlled by the degree of interdigitation [13, 17]: the more extended
the molecule is, the larger is the number of neighbours it interacts with, and the smaller
is the effect of fluctuations. Therefore SCF calculations provide an accurate description
for many properties except for the ultimate vicinity of critical points. The reduction of
fluctuation effects not only applies to composition fluctuations in the vicinity of the critical
point, which can be quantified by the Ginzburg criterion [18], but also to interface fluctua-
tions which are pertinent to the wetting behaviour. The spatial extension of the molecules
also sets the length scale of enrichment layers and facilitates experimental investigations.
Indeed, wetting transitions have been studied in recent experiments [8, 9, 19, 20].

(iii) The vapour pressure of polymer films is vanishingly small,hence the effects of evaporation
can be neglected.

(iv) Polymers tend not to crystallize easily. Therefore, wetting phenomena might not be pre-
emptied by crystal phases. Likewise there is no roughening transition of the interface at
temperature TR as occurs in Ising-like models. In the latter models only the temperature
range Tc > T > TR is available for studies of the wetting behaviour, and it might be dif-
ficult to separate bulk-like fluctuations of the order parameter from interface fluctuations.

Using a coarse-grained polymer [17, 21] model for an AB binary melt we locate the first
order wetting transition, the phase diagram in a symmetric slit pore (symmetric film) [14], and
the phase diagram in a thin film where the substrate favours the A-component of the mixture
with the same strength as the top surface attracts the B-component (antisymmetric film) [13, 15].
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Figure 1. Laterally segregated binary film. The shape of the interfaces is obtained by minimizing
the effective Hamiltonian H = γAB LAB + γAS LAS + γBS LBS + γAV LAV + γBV LBV at fixed volume
of the components. Li j denotes the area of the interface between substances i and j , and γi j the
corresponding interface tension. We assume that the interface positions do not vary in the direction
perpendicular to the lateral coordinate shown, i.e., cylindrical domain shapes. The figure refers to
the choice γAV − γBV = γAS − γBS = 0.5γAB, γBS = γAB and γAV/γAB as indicated in the key.
From [26].

Then, we discuss the phase behaviour in a quadratic pore where two neighbouring surfaces
favour the A-component and the other two neighbouring surfaces favour the B-component
(antisymmetric double wedge) [22, 23]. We conclude with an outlook.

2. Model and techniques

We consider a binary polymer blend. Both species—A and B—contain the same number N
of monomers per chain and have the same spatial extension Re. They are confined into a
thin film; the bottom substrate (W) might be a silicon wafer, while the other surface might be
the interface to the vapour (vacuum, V). In general, a compressible mixture of two polymers
exhibits a quite rich phase diagram [24, 25]. In addition to liquid–liquid demixing into an
A-rich and a B-rich liquid, there occur liquid vapour coexistence regions and also liquid–
liquid–vapour three-phase regions. The case of a partially miscible binary polymer blend on a
solid support corresponds to liquid–liquid–vapour coexistence. Depending on the ratio of the
interface tension γAB between the segregated bulk phases and the surface tension γAV, γBV of
the components and the vapour, the upper surface might be rough. The qualitative behaviour is
illustrated in figure 1, where we obtain the shape of the segregated domains by minimizing the
sum of the interface and surface free energies at constant volume of the coexisting phases. If
the AB interface tension is comparable to the liquid/vapour tension, it ‘drags’ the film surface
towards the substrate so as to reduce the length of the AB interface. A rather rich morphology
of droplets and wetting patterns can be expect in compressible binary mixtures [27]. If the
liquid/vapour tension exceeds the AB interface tension by about two orders of magnitude,
however, the surface is almost flat, and the situation is equivalent to a binary mixture between
two hard surfaces a distance � apart [26]. In the following we shall restrict ourselves for
simplicity to this case, γAB � γAV or γBV. In this limit, the liquid–vapour interface resembles
the interface between the polymer and the substrate, i.e., both interfaces are much narrower
than the AB interface between the A-rich and B-rich liquid. Then, the behaviour of a supported
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binary film is similar to the behaviour of a binary mixture confined into a rigid, slit-like pore1

[28].

2.1. Monte Carlo (MC) simulations

In the MC simulations we use a computationally efficient, coarse-grained lattice model. The
bond fluctuation model [17, 21] retains the universal features of polymers—connectivity,
excluded volume of segments and a thermal interaction which leads to phase separation—
but ignores details of chemical structure. Effective monomers prevent the corners of a unit
cell of a 3D cubic lattice from double occupancy. We use chain length N = 32. Monomers
along a chain are connected via bond vectors of length 2,

√
5,

√
6, 3 or

√
10 in units of the

lattice spacing u. The end-to-end distance of the chains is given by Re(N = 32) ≈ 17u, and
it is almost independent of temperature. The simulations are performed at a monomer number
density of � = 1/16. This density corresponds to a concentrated solution or melt, where the
chains adopt Gaussian conformations on large length scales. Different monomers repel each
other by a square well potential of depth ε which comprises the nearest 54 neighbours up to a
distance

√
6u; like monomers attract each other. The strength of the repulsion is proportional

to the Flory–Huggins parameter χ = 5.3ε/kBT [17]. The surfaces are structureless and
impenetrable. They act on monomers in the two nearest layers (dwall = 2) with strength εwall

(short-ranged surface forces). A positive value corresponds to an attraction to A-monomers.
For thin films we use εwall = 0.16kBT .

This coarse-grained model is well-suited to investigating the interplay of wetting and phase
separation in binary polymer mixtures or collective phenomena in self-assembled systems [29].
On the one hand, one expects that details of the atomistic structure of the polymers influence
the statistical mechanics on larger, mesoscopic length scales only via a small number of
coarse-grained parameters, e.g., the incompatibility between the two polymer species, χ N , the
length scale given by the end-to-end distance, Re, and the invariant degree of polymerization,
N̄ = (�R3

e/N)2, which parameterizes the strength of fluctuation effects. We can assess the
validity of this expectation and explore the role of fluctuations by quantitatively comparing
the results of the MC simulations and the SCF theory. On the other hand, a segment of the
coarse-grained model corresponds to a small number of repeat units on the atomistic scale.
The reduction in the number of degrees of freedom and, more importantly, the simplifications
and softening of the interaction potential between the coarse-grained segments are necessary
to explore the phenomena on large length and time scales pertinent to the wetting and phase
behaviour. Note that in the following we use system sizes with up to 2.8 million lattice sites.

The MC simulations are performed in the semi-grandcanonical ensemble, i.e., we fix
the incompatibility/temperature, the volume, the total number of polymers, and the chemical
potential difference �µ between the two species, but the composition of the melt fluctuates.
The simulations comprise two types of MC moves. Canonical moves relax the conformations
of the polymer on the lattice, but leave the composition unaltered. We use random, local
monomer displacements and slithering snake movements. The semi-grandcanonical moves
consist of relabelling an A-polymer into a B-polymer and vice versa [30]. This MC move
changes the composition but leaves the polymer conformations unaltered. Of course, these
moves are greatly facilitated by the structural symmetry of the polymer species, although they
can also be applied to polymers that differ in their stiffness [31] or chain length [32].

The key quantity to be monitored in the simulation is the probability distribution P of
the composition φ. In the vicinity of phase coexistence, P(φ) exhibits a two-peak structure,

1 If the film surfaces are elastic (mechanically confined) as opposed to strictly rigid, the interplay between phase
separation and elastic distortion of the surfaces gives rise to interesting pattern formation (see [28]).
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Figure 2. Probability distribution of the composition at ε = 0.02kB T (i.e., T/T bulk
c = 0.7215)

in a system of geometry 3.8Re × 3.8Re × 7.5Re with periodic boundary conditions in all three
directions. The two peaks correspond to the A-rich and the B-rich phase as indicated by the
snapshots. Around φ = 1/2 the typical configuration consists of two domains separated by two
AB interfaces of size L2. It is advantageous to use an elongated simulation cell [33]: the slab
configuration—an A-rich domain that spans the simulation cell in the two shorter directions and
is separated by two interfaces from a B-rich domain—is stable over a larger range of composition
and for symmetric composition, φ = 1/2, the two AB interfaces are further apart, thereby reducing
the interactions between the two interfaces.

as can be seen in figure 2. The location of the coexistence can be accurately determined by
the equal weight criterion [34]. For the system to explore the pertinent range of compositions
and to establish that it spends equal amount of time in both phases, the system has to tunnel
often between the two peaks in the course of the simulation. Typically, the two phases are,
however, separated by a large free energy barrier, which corresponds to the free energy cost of
two interfaces between the coexisting phases of size L2 (L being the linear dimension of the
simulation cell). In order to facilitate tunnelling between the different regions in configuration
space that correspond to the different phases, we employ a re-weighting technique. To this
end one adds a weighting function kBT ln w(φ) to the Hamiltonian, that depends only on the
average composition φ of the system, but not on the details of the configurations [35]. If one
chooses w(φ) ≈ P(φ) the system will sample all compositions with roughly equal probability.
A suitable estimate of P(φ) can be generated by histogram extrapolation [36], starting in the
vicinity of the critical point where the two phases are not separated by a large free energy barrier.
Other methods, e.g., the Wang–Landau algorithm [37] or successive umbrella sampling [38],
have also been employed. This method allows us to determine phase coexistence in the bulk and
in confined geometry, and it additionally provides information about the interface and surface
tension, γAB = kB T

2L2 ln Pmax/Pmin [39]. These techniques can also be applied to determine
the difference of the surface free energies from the simulations or to wetting transitions of
one-component polymer solutions [40–42] and Ising models [23].

2.2. Self-consistent field (SCF) calculations

Additionally, we calculate the phase behaviour of a confined AB mixture within the SCF theory
of Gaussian polymers [43–45]. The film comprises a volume V0 = �0 × L × L. �0 denotes
the film width, while L is the lateral extension of the film. The density at the film surfaces
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decreases to zero in a boundary region of width �w according to [46]

�0(x) =




1 − cos
(

π x
�w

)
2

; 0 � x � �w

1; �w � x � �0 − �w

1 − cos
(

π(�0−x)

�w

)
2

; �0 − �w � x � �0

(1)

where �0 denotes the ratio of the monomer density and the value � in the middle of the film.
The width � of an equivalent film with constant monomer density � is � = �0 − �w. We
choose �w/Re = 0.15 � 1 [46] for computational convenience. If both polymer species are
structurally symmetric, i.e., they are characterized by the same end-to-end distance, Re, and
their volumes are identical, they suffer the same entropy loss as they pack against the surface.
Therefore, the surface free energy difference �γ is (largely) independent of the width of the
boundary region �w [47]2.

Both surfaces interact with the monomer species via a short-ranged potential H :

H (x) =




4�1 Re

{
1 + cos

(
π x
�w

)}
�w

; 0 � x � �w

0; �w � x � �0 − �w

4�2 Re

{
1 + cos

(
π(�0−x)

�w

)}
�w

; �0 − �w � x � �0.

(2)

H > 0 is attractive for the A-monomers and repulsive for the B-species. The normalization of
the surface fields �1 and �2, which act on the monomers close to the left and the right surface,
is chosen such that the integrated interaction energy between the surface and the monomers is
independent of the width of the boundary region �w. As we shall see below, this condition
makes the wetting transition temperature of a symmetric polymer mixture rather independent
of �w, but the length of the pre-wetting line (or the strength of the transition) depends on the
width �w of the surface boundary.

A- and B-polymers contain N monomers and are structurally symmetric. The
polymer conformations {rα(τ )} determine the microscopic A-monomer density �̂A(r) =
N
�

∑nA
α=0

∫ 1
0 dτ δ (r − rα(τ )), where the sum runs over all nA polymers of type A in the system

and 0 � τ � 1 parameterizes the contour of the Gaussian polymer. A similar expression
holds for �̂B(r). With this definition the semi-grandcanonical partition function takes the
form [12, 13]

Z ∼
n∑

nA=1

e+�µnA/2kB T

nA!

e−�µnB/2kB T

nB!

×
∫ nA∏

iA=1

DiA [r]PA[r]
∫ nB∏

iB=1

DiB [r]PB[r]δ
(
�0 − �̂A − �̂B

)

× exp

(
−�

∫
d3r

{
χ�̂A�̂B − H (�̂A − �̂B)

})
(3)

where n = nA + nB and �µ represents the exchange potential between A- and B-polymers.
The functional integral D sums over all conformations of the Gaussian polymers with the

2 In the presence of structural asymmetries in the segmental volumes, the loss of conformational entropy of the chains
as they pack to comply with the density profile leads to an entropic contribution to �γ . The effect can be estimated
by the Lifshitz entropy formula (see [47])
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statistical weight

P[r] ∼ exp

(
− 3

2R2
e

∫ 1

0
dτ

(
dr
dτ

)2
)

(4)

of a non-interacting Gaussian polymer (Wiener measure) [48]. The second factor enforces
the monomer density profile to comply with equation (1) (incompressibility). The Boltzmann
factor in the partition function incorporates the thermal repulsion between unlike monomers,
which is described by the Flory–Huggins parameter χ , and the interactions between monomers
and surfaces.

In the SCF theory, one introduces auxiliary fields �A, φB, WA, WB, and � to rewrite the
partition function of the interacting multi-chain systems in terms of non-interacting chains in
fluctuating fields. In the mean field approximation the free energy is obtained as the extremum
of the semi-grandcanonical free energy functional G[�A, φB, WA, WB,�]

G
nkBT

≡ + ln
n

V0
− lnQ +

1

V

∫
d3r (χ N�A�B − H N {�A − �B})

− 1

V

∫
d3r ({WA�A + WB�B} + � {�0 − �A − �B}) (5)

with respect to its arguments WA, WB,�A,�B,�. QA denotes the single chain partition
function:

QA[WA] = 1

V0

∫
D1[r]PA[r] e−∫ 1

0 dτ WA(r(τ )) (6)

and similarly for QB, and Q = exp(�µ/2kBT )QA + exp(−�µ/2kBT )QB.
The values of WA, WB,�A,�B,� which extremize the free energy functional are denoted

by lower-case letters and satisfy the self-consistent set of equations

wA(r) = χ NφB(r) − H (r)N + ξ(r) (7)

φA(r) = −V e�µ/2kB T

Q
δQA

δwA(r)
and (8)

�0(r) = φA(r) + φB(r) (9)

and similar expressions for wB and φB. Substituting the extremal values of the densities and
fields into the free energy functional (5) we calculate the free energy G of the different phases.
At coexistence the two phases have equal semi-grandcanonical potential G at given χ N and
�µ.

To calculate the monomer density we employ the end segment distribution which satisfies
a diffusion equation [43, 44]. We expand the spatial dependence of the densities and fields in
a set of orthonormal functions [45, 46]. This procedure results in a set of non-linear equations
which are solved by a Newton–Broydon method. We use up to 120 basis functions and achieve
a relative accuracy 10−4 in the free energy in one-dimensional calculations.

We emphasize that there is no other approximation involved than the mean field
approximation. In particular, we do not assume slowly spatial variation of the density
profiles [49–51]. This condition is not fulfilled in the vicinity of the surfaces if �w/Re � 1.
The large and rapid density variation at the surface gives rise to pronounced local effects,
e.g., deformation of the chain extension perpendicular to the surface or enrichment of chain
ends. These result in corrections to the square gradient approximation [52–54]. The SCF
calculations properly account for these phenomena on length scales down to a fraction of the
coil extension. Non-universal packing effects on the length scale of a monomer are, of course,
not incorporated in the Gaussian chain model. To this end, one has to replace the zero-ranged
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interactions by a density functional and also consider the detailed molecular architecture on
the short length scales via a partial enumeration scheme [40–42].

The SCF calculations have been extended to study the fluctuations and kinetics of phase
separation [55–57]. In this case, one uses the free energy of the SCF theory as a function of
the composition, φA(r), or the external field, wA(r) − wB(r), which is thermodynamically
conjugated to the composition, to construct a purely relaxational dynamics that corresponds
to class B in the scheme of Hohenberg and Halperin [58]. The underlying dynamics of
the extended polymer molecules enters the description via the Onsager coefficient, which
relates the gradient of the derivative of the free energy with respect to the dynamic variable to
the current of that variable. If one uses the composition as a dynamic variable, different
non-local expressions for the Onsager coefficient that are appropriate for Rouse-like and
reptation-like dynamics are available [59]. Interestingly, if one uses the external potential as a
dynamic variable (external potential dynamics [60]), a local Onsager coefficient corresponds
to Rouse-like dynamics. The influence of the single molecule dynamics on the kinetics of
collective concentration fluctuations has been investigated during the early stages of spinodal
decomposition [56] in the bulk and the formation of enrichment layers at surfaces [55]. In both
cases a local Onsager coefficient together with the external potential rather than the composition
as a dynamic variable results in a much better agreement with simulation data and it is also
computationally advantageous.

In the strong segregation limit χbulk
c N = 2 � χ N � N many results of the SCF

calculations are describable by simple analytic expressions. We shall denote these formulae
by SSL in the following. For instance, the AB interface tension takes the form [61]:

γAB R2
e

kBT
=
√

N̄
√

χ N/6

(
1 − 4 ln 2

χ N
+ · · ·

)
(SSL) (10)

where N̄ ≡ (�R3
e /N)2 is the invariant degree of polymerization.

The excess free energy of a surface in contact with the A-rich phase has two contributions.
On the one hand the polymer conformations are restricted due to the presence of the surface.
Since A- and B-polymers are assumed to have identical architectures, they lose the same
conformational entropy as they pack against the surface. Hence, the difference in surface
free energy between the two components is dominated by the surface energy. If the surface
is completely covered by the A-component the surface energy per unit area amounts to
ewall/kBT = �Re� [46]. The surface energy density of a surface covered with B has the
opposite sign. The experimentally relevant quantity is the strength of the monomer–surface
interaction �Re ∼ �

√
N . In general, the interaction between the chemical constituents of

the mixture and the surface does not depend on the molecular weight, and �Re ∼ �
√

N is
independent of the chain length N .

3. Wetting transition

To accurately locate the wetting transition and calculate the contact angle of macroscopic
A-drops we use Young’s equation [62]: γAB cos � = γWB − γWA ≡ �γ . The results for
our model are presented in figure 3. From the crossing of γAB(ε) and �γ (ε) we accurately
locate the wetting transition. The fact that curves intersect under a finite angle indicates that
the wetting transitions are of first order. As we reduce the monomer–surface attraction the
wetting transition shifts to higher temperatures kBT/ε and becomes weaker. For all transitions
studied, however, the wetting transition is of first order. This is also corroborated by SCF
calculations [13, 63], where we find first order wetting transitions for T/Tc < 0.98.
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Figure 3. Interface tension γAB and difference in surface tensions �γ = γWB − γWA as a function
of inverse temperature ε/kBT obtained from simulations. Approximations for the interface tension
γAB = b�

√
χ/6 in the strong segregation limit and �γ = 2�dwallεwall = εwall/4 (dashed–dotted

lines) are also shown. From [14]. The inset shows the dependence of the contact angle on εwall for
the two temperatures investigated in section 5.

Computationally, Young’s equation has distinct advantages for locating first order wetting
transitions [14, 40]:

(i) The interface free energy γAB and the difference �γ = γWB − γWA can be measured
accurately in separate simulations, thereby avoiding the need for huge simulation cells to
simulate a thick A-layer at the surface in equilibrium with a B-rich bulk.

(ii) By virtue of the A � B symmetry, the difference �γ can also be rewritten as the difference
�γ = γWB − γ−WB of surface tensions of a surface that attracts the A-component and a
surface that attracts the B-component. This free energy difference can be measured by
thermodynamic integration or expanded ensemble methods [14]. This method works best
for wetting transitions that are strongly first order.

(iii) Unlike observing the dependence of the thickness of the A-layer on temperature or
monomer–surface attraction, one directly measures free energies. Therefore, we do
accurately locate the first order transition, while the instability of the A-rich layer is
located somewhere between the transition and the mean field wetting spinodal. Moreover,
determining the order of the transition from the observation (or absence) of metastability
is not always easy.

In case of a first order wetting transition, there is a concomitant pre-wetting transition
(see section 4.1). Locating the pre-wetting transition involves only enrichment layers of finite
thickness (accessible to simulations of finite system sizes), and by extrapolating these data back
to the coexistence curve we also obtain an accurate estimate. The metastability of enrichment
layers or the apparent contact angle of microscopic drops is much less reliable [64, 41].

If the wetting transition is of first order, then there will be only a (vanishingly) small
A-rich layer in the non-wet state. The surface free energy difference �γ is mainly enthalpic.
If we assume that the wetting transition is strongly first order, we can neglect the microscopic
enrichment layer at the surface and obtain �γ = 2εwalldwall�, where dwall = 2 denotes the
range of the monomer–surface interaction and � = 1/16 the monomer number density. Using
the expression for the interface tension γAB = �b

√
χ/6 (with b ≡ Re/

√
N − 1 = 3.05u
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being the statistical segment length) in the strong segregation limit [61], we obtain

χwet = 24

(
εwalldwall

bkBT

)2

(11)

or, equivalently, in terms of the surface fields used in the SCF calculations, �wet N ≈√
χwet N/24(1 − 4 ln 2

χ N + · · ·).
This behaviour is in marked contrast to the value of the critical Flory–Huggins parameter

at the unmixing transition in the bulk, χc = 2/N ∼ 1/Tc � χwet [14]. As both the interface
tension γAB and the difference in surface tension �γ are chain length independent, so is
the wetting transition temperature. The critical temperature Tc of phase separation, however,
increases linearly with chain length N . Therefore, critical phenomena associated with the
bulk unmixing and wetting phenomena are well separated (i.e., using the expressions for the
strong segregation limit is justified), and polymer mixtures are good candidates for studying
first order wetting transitions.

4. Thin films

4.1. Capillary condensation and interface localization/delocalization

If the mixture is confined into a film, the surface interactions modify the phase behaviour. As
wetting is associated with the growth of an infinitely large enrichment layer, it is rounded-
off in a thin film [5]. If the wetting transition is of first order, there will be a pre-wetting
transition [1, 2]: a coexistence between a thin and a thick (but microscopic) enrichment layer
at a chemical potential which differs from the value at coexistence in the bulk. As pre-wetting
transitions involve only enrichment layers of finite thickness, they might give rise to transitions
in thin films.

First, we regard a film with symmetric surfaces [14, 16], i.e., both surfaces attract the
A-component. The phase diagram as obtained from the simulations is presented in figure 4.
Compared to the phase behaviour in the bulk, the critical point is shifted to lower temperatures
and larger composition of the species attracted by the surfaces [5]. The binodal in the vicinity
of the critical points exhibits two-dimensional Ising (2DI) critical behaviour in contrast to the
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Figure 5. (a) Schematic temperature dependence of the effective interface potential in a film
with antisymmetric surfaces. We assume that the wetting transition is of first order and that the
film thickness is larger than the tricritical thickness (see the text for further explanation). This
scheme does not correspond to simulation data or SCF calculations, but the lines are obtained by
phenomenologically describing the interface potential by a sum of three exponentials (see [15] for
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(b) Phase diagram of a mixture. (c) Sketches of typical configurations for T > T film
c (upper panel),

Ttrip < T < T film
c in the miscibility gap (middle panel) and T < Ttrip (lower panel) for 〈φ〉 �= 1/2.

From [16].

three-dimensional Ising (3DI) behaviour of the bulk unmixing transition. As we increase the
film width �, the critical temperature gradually approaches the bulk critical temperature and
the binodals of the film converge towards the bulk coexistence values.

We note, however, that this does not hold true for spinodal curves inside the miscibility
gap, because phase separation in the film proceeds via the instability of AB interfaces that
run parallel to the film surfaces (via interface fluctuations) rather than bulk-like composition
fluctuations. Therefore, the spinodals in a film do not converge towards their bulk counterparts
as � → ∞ [65].

Note the pronounced distortion of the B-rich binodal in the vicinity of the wetting
transition. In the B-rich phase there are A-rich layers at the surfaces, and the B-component
prevails in the middle of the film. In the vicinity of the wetting transition the thickness of the
A-enrichment layers grows as we increase the temperature. If we increased the film thickness
this distortion would evolve into an additional two-phase region [14, 66], corresponding to a B-
rich phase with thin and thick A-layers at the surface. This two-phase region would correspond
to the pre-wetting coexistence and it would join the B-rich binodal in a triple point.

The phase diagram of an antisymmetric film is also presented in figure 4. In this case
one surface attracts the A-component with exactly the same strength as the other surface
attracts the B-component. The phase diagram contains two critical points and a triple
line [12, 13, 15]. Around the critical temperature of the bulk, enrichment layers gradually
form at the surfaces and stabilize an AB interface that runs parallel to the surfaces. At the
interface localization/delocalization transition [67–69] this AB interface becomes bound to
one of the surfaces. In the case of a first order interface localization/delocalization transition
this corresponds to a triple point of the phase diagram: an A-rich phase, a B-rich phase and a
phase with symmetric composition coexist.

The behaviour can be analysed qualitatively by looking at the interface potential g(l)
which describes the interaction between an AB interface and a single surface. If the film is
wide enough, the interface potential can be constructed as a superposition of the interface
potentials emerging from each surface. The qualitative behaviour in the vicinity of a first
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Figure 6. (a) SCF calculations for the dependence of the phase diagram on the film thickness
�0. For very thin films, the interface localization/delocalization transition is of second order even
though the wetting transition is of first order. For �0tri = 0.605Re the transition is tricritical. In
this case the binodals mirror the small exponent βMF

tri = 1/4 of the tricritical mean field universality
class. For all larger film thicknesses it is of first order. From [13]. (b) Probability distribution for
various film widths as indicated in the key scaled to unit norm and variance. The incompatibility
has been adjusted such that the peak heights correspond to the scaled universal distribution of the
two-dimensional tricritical universality class. The latter distribution is shown as circles [71]. The
lateral system size is L = 5.6Re . From [15].

order wetting transition is depicted in figure 5(a). Using a double-tangent construction we can
obtain the phase behaviour in a thin film. At low temperatures there coexist an A-rich phase
and a B-rich phase, in which the AB interface is localized at the surface. Upon increasing the
temperature, one encounters the triple point. This triple point is the thin film analogy of the first
order wetting transition. As the film width increases, the triple temperature converges towards
the wetting transition temperature of the semi-infinite system. Above the triple temperature
there are two phase coexistence regions, which correspond to thin and thick enrichment layers
at the surfaces. This is the analogy of the pre-wetting transition in a thin film. If we increase
the film width �, the miscibility gaps associated with the pre-wetting coexistence become
narrower, δφ ∼ 1/�. For each finite value of � < ∞, the critical points are associated with
the pre-wetting behaviour and not bulk criticality.

4.2. The tricritical interface localization/delocalization transition

If we reduce the film width, the interactions emerging from each surface interfere.
Landau theory calculations [70] explain that this leads to a second order interface
localization/delocalization transition at small film widths (with a single critical point). For
large film thickness the transition is of first order. Both regimes are separated by a tricritical
transition [70]. The dependence of the phase diagram on the film thickness as obtained from
SCF theory is presented in figure 6(a). Estimating the tricritical film thickness from the MC
simulations is computationally demanding. The scaled distribution functions prove convenient
for accurately locating the tricritical width from the simulation data. To this end we have
adjusted the temperature such that the central peak of the probability distribution of the order
parameter m ∼ φA − φB is a factor 1.2 higher than the outer peaks. This corresponds to the
behaviour of the universal distribution of the two-dimensional tricritical (2DT) universality
class [71]. The results for various film widths � (in units of the lattice spacing) are presented
in figure 6(b). For � < �tri the valleys between the three peaks are too shallow (see figure 6),
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behaviour of the surface with interaction �1 N = +0.5. From [12].

while they are too deep for � > �tri. In the latter case the transition is of first order, and
our estimate tends towards the triple temperature. At �tri ≈ 0.89Re the distribution of our
simulations is similar to the universal 2DT distribution, and this has been confirmed for larger
lateral system sizes [15].

4.3. Crossover from capillary condensation to interface localization/delocalization

Realizing strictly (anti)symmetric surface interactions is often difficult in experiments.
How does the phase behaviour vary between the two qualitatively different limits—
capillary condensation and interface localization/delocalization—for not strictly symmetric
or antisymmetric systems? By altering the surface interaction �2 N of the top surface
from attracting the A-component to attracting the B-component (while the bottom surface
always attracts the A-component with fixed strength �1 N) in the SCF calculations,
we study the crossover from capillary condensation for symmetric surfaces to interface
localization/delocalization. The dependence of the phase diagram on the surface interactions
within the SCF calculations is presented in figure 7. For symmetric surfaces (capillary
condensation) the critical point is shifted towards lower temperatures [5], similar to the
simulation result. The coexisting phases have almost uniform composition across the film
and differ in their average composition. As we reduce the preference of the top surface
for species B, the critical point and the critical composition tend towards their bulk values
(φ = 0.5, 1/χ N = 0.5), i.e., the critical temperature increases and the critical composition
becomes more symmetric [12]. The coexistence curve in the 1/χ N–�µ plane approaches the
symmetry axis. Upon making the top surface attracting the other component, B, we gradually
change the character of the phase transition towards an interface localization/delocalization
transition [67, 68]. The critical temperature passes through a maximum and the critical
composition through a minimum, respectively. For �2 N < 0 (surface attracting the B-
component) there are enrichment layers of the A-component at the bottom and the B-component
at the top, and the two coexisting phases differ in the location of the AB interface which runs



S346 M Müller and K Binder

parallel to the surfaces. As the preferential interaction of the top surface increases, the critical
temperature decreases and the critical composition becomes richer in A. When the coexistence
curve intersects the pre-wetting line of the bottom surface at �µ < 0, a triple point forms
at which an A-rich phase and two B-rich phases with a thin and a thick A-enrichment layer
coexist. When the bottom surface attracts the component A with exactly the same strength
as the top surface the component B (antisymmetric surfaces), the phase diagram becomes
symmetric.

4.4. Length scale of the interface potential g(l)

The effective interface potential g(l) is a key to describing the wetting behaviour. Within mean
field theory, much of the influence of the wetting behaviour on the phase transitions in thin
films can be understood from the interface potential (see section 4.1).

Both in our MC simulations as well as in our SCF calculations the monomer–surface
interactions are strictly short ranged, while in experiments the van der Waals interactions
between the constituents of the surface and the polymer fluid will also give rise to an additional
long-ranged contribution to the interaction. We note that the qualitative interplay between
wetting and phase separation in thin films will remain unaltered as long as the wetting transition
is of first order. Of course, this qualitative similarity does not hold true for power laws that
describe the growth of the wetting layer at a second order wetting transition or complete
wetting, and, in particular, fluctuation effects depend strongly on the range of the interface
potential.

In the case of short-ranged forces, the interaction between the AB interface and the surfaces
stems from a distortion of the composition profile in the vicinity of the surface. The interaction
decays exponentially with the distance l between the interface and the surface, and the length
scale of the decay 1/λ is set by the characteristic length scale of the interface profile. In a
binary polymer blend, however, the intrinsic profile (i.e., without considering capillary waves)
of the interface between the two coexisting phases in the bulk is characterized by two length
scales: the width wSSL/2 characterizes the slope of the profile at the centre. In the strong
segregation limit, χ N � 2, it is independent of the chain length and decreases with increasing
incompatibility: wSSL = Re/

√
6χ N . This length scale is set by the size of polymer loops

across the interface, which on average cost a free energy comparable to kBT . Far away from
the centre, the profile approaches the composition of the coexisting phases exponentially, and
the characteristic length scale is set by the correlation length ξ of composition fluctuations of
the bulk. The latter quantity becomes independent of the incompatibility and is of the order
Re ∼ √

N for χ N � 2. In the weak segregation limit, χ N − 2 ∼ O(1), the two length
scales become identical, w ∼ Re. Which of the two length scales characterizes the decay of
the interface potential g(l) in binary polymer blends?

To this end, we have calculated the free energy density f of an antisymmetric film in the
SCF theory as a function of the composition φ for various film widths and two temperatures,
χ N = 5 and 8. Those temperatures are above the critical temperature of the film, and the AB
interface is localized in the middle of the film. Around φ = 1/2 the free energy density can be
expanded in the form f = f1 + f2(φ−1/2)2. This yields for the effective AB interface potential
g(l) = �kBT � f/N ∼ constant + f2(l − �/2)2/�. Above the critical temperature we can
estimate the effective range 1/λ of the interaction according to g(l) ∼ exp(−λ�/2) ∼ f2/�.
In figure 8 we plot f2/� versus the film width �. For large film widths the data exhibit an
exponential dependence on the film width. Upon increasing the temperature the interaction
increases as the surfaces repel the AB interface stronger. For small �, i.e., distances between
the AB interface and the surface which are not very much larger than the interfacial width w,
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the interaction decays somewhat faster, w < 1/λ < ξ . For large � the interaction range is
compatible with 1/λ = ξ ≈ Re/

√
18, where we have used the behaviour of the correlation

length at strong segregation.

4.5. Fluctuation effects

Fluctuation effects are important in the vicinity of critical points. Of course, the binodals are
parabolic in mean field theory independent of dimensionality (see figure 7), while the MC
simulations yield much flatter binodals in accord with the Ising universality class in three [30]
and two dimensions (see figure 4). Simulation data for the bulk phase behaviour [32, 17] show
that the mean field theory becomes quantitatively accurate in the limit N̄ → ∞, as expected
from the Ginzburg criterion [18].

In a symmetric polymer blend, however, wetting occurs far below the critical point; hence,
critical, bulk-like fluctuations of the composition are not important for the wetting behaviour.
The fluctuations of the local interface position, i.e., capillary waves are the pertinent fluctuations
that may modify the mean field predictions on wetting [1, 2]. Instead of minimizing the free
energy g(l) of a (hypothetically) flat interface that interacts with the confining surfaces, the
behaviour of the fluctuating AB interface, which is bound to the surface, can be described
via an effective Hamiltonian. Many theoretical investigations have been directed towards the
detailed form of this Hamiltonian [72, 73]. In its simplest, most basic form this Hamiltonian

Heff [l]

kBT
=
∫

dx dy

{
γ

2
(∇δl(x, y))2 +

1

2

∂2g

∂l2
δl2

}
(12)

comprises a contribution from the increase of the interface area due to deviations δl of the
local interface position from its average value 〈l〉 and the effect of the interface potential g(l).
x and y denote the coordinates parallel to the interface.

4.5.1. Interface tension and its position dependence. The validity of the coarse-grained
interface description by the Hamiltonian (12) can be assessed by computer simulations. The
results (especially at small length scales) depend somewhat on which method is used to extract
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l(x, y) from the simulation snapshots. We use an integral criterion [74] for the local, y-averaged
interface position:

l(x) =
∫ �/2

0 dz
∫

dy φA(x, y, z)
2
�

(2〈φ〉 − 1)
∫ �/2

0 dz
∫

dy [φA(x, y, z) + φB(x, y, z)]
+ constant. (13)

The local interface position can be Fourier decomposed according to

l(x) ∼ a0

2
+

L/2−1∑
k=0

[
aqk cos(qk x) + bqk sin(qk x)

]
(14)

with qk = 2πk/L. Using the equipartition theorem, we find that the Fourier amplitudes are
Gaussian distributed and their variances are given by

2

L2〈a2
q〉

= γ

kBT

{
q2 +

d2g

γ dl2

}
= γ

kBT

{
q2 +

(
2π

ξ‖

)2
}

(15)

where we have used a quadratic expansion of the interface potential around its average,
equilibrium position. The interaction between the interface and the surfaces, g(l), imparts
a parallel correlation length ξ‖ onto the interface fluctuations which cuts off the spectrum at
large length scales.

Simulations of unconfined interfaces [33, 75] have shown that the Fourier amplitudes are
indeed Gaussian distributed and that γ can be identified with the interface tension γAB, which
has been measured independently. This is illustrated by the full circles in figure 9 that display
the spectrum of interface fluctuations of an unconfined interface (using a local criterion for
the interface position [33]), whereas the dashed curve corresponds to the prediction (15) with
g = 0 and γ = γAB as determined independently via a re-weighting technique. The effective
interface Hamiltonian yields an accurate description of the fluctuations of a non-interacting
interface on large length scales. By analysing larger wavevectors we can extract higher order
terms that correspond to the bending rigidity of the interface [33, 40].
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The other data in figure 9 refer to a confined system with symmetric boundary conditions
at capillary condensation (in the B-rich phase). The open symbols denote simulation results,
whereas the solid lines present linear regressions according to equation (15). The fit yields
the parallel correlation length ξ‖ and the effective interface tension γ , and the results are
presented in the inset of figure 9. To extract the parallel correlation length we have assumed
that the interface tension γ in the interface Hamiltonian corresponds to the value of an unbound
interface, γAB. Unfortunately, the integral definition of the local interface position is affected by
bulk composition fluctuations, which result in an overestimation of the fluctuations of the local
interface position. However, assuming that these bulk composition fluctuations are laterally
uncorrelated on length scales 2π/q larger than the bulk correlation length ξ , we can take them
into account by the substitution(

d2g

dl2

)−1

eff

≈
(

d2g

dl2

)−1

+
�χ+

2(2〈φ〉 − 1)2
(16)

where χ+ is the susceptibility of the A-rich phase. Thus, bulk composition fluctuations mainly
influence our estimate of ξ‖. However, we can still use equation (15) to extract an effective
interface tension γ for 0 < q < 2π/ξ . The results for γ as a function of the distance l are
presented in the inset of figure 9. Most notably, the effective interface tension, γ , for width
� = 2.8Re is more than twice as large as γAB of a free interface. For a larger distance between
the interface and the surface, γ approaches the interface tension of the free AB interface, γAB.

4.5.2. Renormalization of g(l) by capillary waves. In the SCF calculations the range of
the interface potential is set by the correlation length ξ of the bulk composition fluctuations.
Fluctuations of the local interface position—i.e., capillary waves—give rise to corrections to
the mean field theory. The renormalization of g(l) by fluctuations has attracted longstanding
interest [72, 73, 76, 77]. Qualitatively, capillary waves cause the interface to fluctuate locally
around the minimum of the interface potential and to average over a small region around
the minimum. If the interface tension γAB is large, the fluctuations are suppressed and the
renormalization is small; if the interface tension is small, the interface makes rather large
excursions around the preferred position and fluctuation effects are important. The strength of
the fluctuation effects can be characterized by the dimensionless capillary parameter ω:

ω = kBT

4πγABξ2
=




ω3DI ≈ 0.86 χ N − χc N � 1/N̄ Ising critical regime

(2χ N − 2)−1/2

√
N̄

1/N̄ � χ N − 2 � 1 weak segregation

9

2π
√

N̄
√

χ N/6
1 � χ N − 2 strong segregation.

(17)

In the ultimate vicinity of the critical point, polymer mixtures exhibit Ising critical behaviour
and the capillary parameter adopts a universal, constant value. At lower temperatures,
however, ω becomes small both upon increasing χ N and the invariant degree of polymerization
N̄ ≡ (�R3

e/N)2. Note that the latter parameter does not influence the mean field prediction for
the phase behaviour or wetting. Hence, by increasing N̄ we can reduce the effect of fluctuations
(both critical composition fluctuations in the vicinity of the critical point as well as capillary
waves) without altering the phase behaviour or other predictions of mean field theory. In the
limit N̄ → ∞ the fluctuation effects become vanishingly small, while for short chain length
one observes fluctuations similar to mixtures of simple molecules.

In figure 10 we determine the decay length of the interface potential from a MC simulation
of a film with symmetric boundaries above the wetting transition temperature, T ≈ 3.55Twet
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(complete wetting). The range of the potential 1/λ (squares) can be extracted from the
dependence of the thickness of the enrichment layers on the exchange potential �µ above
the wetting transition temperature:

〈l〉 = 1

λ
ln

N Aλ

−�(2〈φ〉 − 1)�µ
(18)

where A parameterizes the strength of the interface potential g(l) = A exp(−λl). The
slope −d〈l〉/d ln �µ = 1/λ is displayed in the figure. The simulation data were obtained
at coexistence. The value of the chemical potential �µcoex depends on the film width via
Kelvin’s equation, �µcoex ∼ 1/�.

Alternatively, the capillary waves of the interface give rise to excess fluctuations of the
composition.

〈�φ2〉excess = χ− − χ+

L2�
= 2

�2
(2〈φ〉 − 1)2〈δl2〉 (19)

where χ± are the susceptibilities in the A-rich and A-poor phases, respectively. Using
L2〈δl2〉 = ( d2 g

dl2

)−1
and equation (18), we can estimate the interaction range 1/λ in a single

simulation via
1

λ
= �

2N(2〈φ〉 − 1)
(�µcoex)�

2 L2〈(�φ)2〉excess. (20)

The results of this measurement (circles) agree well with the results from the adsorption
isotherm (squares). The range is larger than the intrinsic width of the interface wSCF obtained
from SCF calculations. When we extrapolate the results to infinite film width � → ∞, the
MC data are compatible with the theoretical prediction 1/λ = ξ(1 + ω/2) [72] for T > Twet.

Direct information on the effective interface potential g(l) can be obtained from the
probability distribution of the composition in the vicinity of the wetting transition temperature
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for an antisymmetric film. Since the wetting transition occurs in the strong segregation limit,
the coexisting phases in the bulk are almost pure 〈φ〉 ≈ 0 or 1, and bulk-like composition
fluctuations can be neglected. Hence, the distance l between the surface and the interface
is given by l = �φ, and the effective interface potential g(l) can be measured in the MC
simulations according to g(l) = −kBT/L2 ln P(φ), where P(φ) denotes the probability
distribution of the composition.

The result for the effective interface potential g(l) in the vicinity of the triple point is
presented in figure 11. The three minima correspond to the A-rich phase, the phase with
the delocalized interface, and the B-rich phase. Unlike the situation at the tricritical point, the
position of the minima does not depend on the lateral system size. Within mean field theory, the
interface potential is independent of the lateral extension L. In the MC simulations, however,
the effective interface potential does depend on L: the minima broaden upon increasing the
lateral system size L and the free energy of the delocalized state decreases with respect to the
localized ones. This dependence of g(l) on the lateral system size gives rather direct evidence
for a renormalization of the effective interface potential by interface fluctuations [78, 79] in
the framework of a microscopic model.

The behaviour can be qualitatively rationalized as follows. Since the interface is
constrained by the surfaces, the interface potential gives rise to a parallel correlation length,
ξ‖ ∼ √

dg2/d2φ (see equation (15)), which acts as a cut-off for the spectrum of capillary
waves. For lateral distances smaller than ξ‖ the local position fluctuates like a free interface;
for lateral distances that exceed ξ‖ interface fluctuations are strongly suppressed [2]. From the
curvature of g(l) it is apparent that this parallel correlation length ξ‖ is larger in the delocalized
state than in the localized ones.

Interface fluctuations reduce the free energy of the system. Since more modes of interface
fluctuations can be thermally excited in the delocalized state (larger ξ‖) than in the localized
one, the former can reduce its free energy with respect to the latter by interface fluctuations.
This effect is important for accurately locating the triple temperature.

For the parameters of the simulation the lateral system size and the parallel correlation
lengths are of the same order of magnitude. In the MC simulations the lateral system size L
additionally cuts off interface fluctuations when L < ξ‖ [74]. For very small L, the lateral
system size determines the number of modes that can be excited in both states, and the relative
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free energy difference does not depend on L. In an intermediate regime of lateral sizes
ξloc < L < ξdeloc (shown in figure 11), the free energy of the localized state is independent of
L, because ξloc acts as a cut-off for interface fluctuations, while we can reduce the free energy
of the delocalized state by increasing L, because more and more (long wavelength) interface
fluctuations build up. This effect can be observed in figure 11. For very large L > ξdeloc (not
accessible in the simulations), the spectrum of interface fluctuations also becomes independent
of L for the delocalized state.

The effect of interface fluctuations is clearly observable in the MC simulations. In the
previous section, we have focused on their influence on the interface potential. Additionally,
they broaden the apparent interface profiles that are observed in simulations and experiments—
a fact that has to be duly accounted for when comparing simulations/experiments to the
prediction of the SCF theory [74]. Moreover, they can disorder highly swollen lamellar phases
in mixtures of homopolymers and diblock copolymers into a microemulsion as observed in
simulations [33], experiments [80], and more recently in SCF calculations [81] that include
fluctuations.

5. Interface localization/delocalization in an antisymmetric double wedge

5.1. Background

In the following we consider wetting (or rather filling) in a wedge geometry. Macroscopic
considerations show that the wedge will be filled with liquid when the contact angle � on a
planar substrate equals the opening angle α. Intriguingly, Parry and co-workers [82] predict
that the filling of a wedge is related to the strong fluctuation regime of critical wetting and that
critical filling may even occur if the concomitant wetting transition of the planar surface is of
first order. Specifically, they predicted the distance l0 of the AB interface from the bottom of a
wedge to diverge as l0 ∼ (Tf − T )−βs with βs = 1/4. Correlations along the wedge and in the
other two directions are characterized by diverging correlation lengths ξy ∼ (Tf − T )−νy and
ξx ∼ ξ⊥ ∼ (Tf − T )−ν⊥ with exponents νy = 3/4 and ν⊥ = 1/4, respectively, for short-ranged
surfaces forces in three dimensions.

We study a wedge with opening angle α = π/4 of the wedge (see figure 12). Similarly to
the study of wetting, we use an antisymmetric geometry and stack two wedges which attract
different components on top of each other. This antisymmetric double wedge is a pore with
quadratic cross-section of size L × L. Let L y denote the length of the wedge (see figure 12).
Such a geometry is advantageous:

(i) If we used identical surface fields on all four free surfaces the analogy of capillary
condensation would occur in a wedge, i.e., phase coexistence would be shifted away
from the bulk coexistence curve and the wetting layers would be only metastable (with
respect to ‘wedge condensation’).

(ii) As wetting layers grew on all four surfaces in the case of symmetric boundaries, we would
need larger system sizes to reduce the interactions between the wetting layers across the
wedge.

The phase behaviour in such an antisymmetric double wedge geometry has been studied
recently in the framework of an Ising model [22]. When the wetting transition of the planar
substrate was of first order, the wedge filling was also found to be of first order. When the
wetting transition was of second order, an unconventional scaling behaviour was observed
which is characterized by critical exponents α = 3/4, β = 0, and γ = 5/4. Those



The interplay between wetting and phase behaviour in binary polymer films and wedges S353

L 2

L

2

l
0

L

2

L

– L/

α=π/4

22 x=0

.

+
– 

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

– 
– 

– 
– 

– 
 

– 

– 
– 

– 
– 

– 
– 

– 
– 

– 
– 

– 

z

x

π/2

z=0

L/

W W

WW

2 2

11

ξ

L

y

L

y
diagonal

– l
0

Figure 12. Antisymmetric double wedge: periodic boundary conditions apply along the y-direction
and there are four impenetrable surfaces of size L × L y . The bottom ones (W1) attract the A-
component with strength εwall and the top ones (W2) attract the B-component. l0 denotes the
position of the interface from one corner. From [22].

critical exponents can be related (see below) to the exponents of critical wedge filling, and the
simulations of the Ising model confirm the predictions of Parry and co-workers [82].

In the following we corroborate these findings in the framework of the Ising model by
our polymer simulations. Moreover, we present evidence for the unconventional second order
transition in an antisymmetric double wedge even if the wetting transition on a planar substrate
is of first order. This might be of practical relevance, because there exist no solid substrates
that exhibit a second order wetting transition.

We present simulation data for two temperatures: ε/kBT = 0.025 (T/T bulk
c = 0.58) and

ε/kBT = 0.05 (T/T bulk
c = 0.29). At both temperatures the wetting transitions, that occur at

appropriate attractive strength εwall of planar surfaces, are of first order (see figure 3). In the
former case it is a weak first order wetting transition; in the latter case it is a strong first order
transition.

5.2. First order transition in an antisymmetric double wedge

At the lower temperature ε/kBT = 0.05, the behaviour is similar to a first order interface
localization/delocalization transition. We consider here only the case �µ = 0 where phase
coexistence in the bulk occurs. This excludes the rather interesting interplay between pre-
wetting and pre-filling behaviour studied in [83]. At large surface interaction, εwall >

ε
trip,wedge
wall , there runs an AB interface along the diagonal which divides the two double wedges

(see figure 12). This corresponds to the delocalized state. Upon decreasing εwall (or decreasing
the temperature) the AB interface becomes localized in one of the wedges. In this case the
composition of the double wedge is either A-rich or B-rich and we define m ≡ φA − φB as
the order parameter. The two situations are separated by a triple point ε

trip,wedge
wall at which the

interface can be localized in either of the wedges or be delocalized on the diagonal. The trimodal
probability distribution in the vicinity of the tricritical point is presented in figure 13. In analogy
to the case of antisymmetric films we expect this triple point in a double wedge to correspond
to a first order filling transition. In the inset we show the cumulant 〈m2〉/〈|m|〉2 as a function
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3.8Re × 3.8Re × 13.4Re exhibits a three-peak structure, which is characteristic of a first order
transition. The inset shows the dependence of the cumulant 〈m2〉/〈|m|〉2 with m ∼ φ − 1/2 on
εwall for three different system sizes.

of the surface interaction strength εwall. If the transition was of second order, these cumulants
would depend monotonically on εwall and would exhibit a common intersection point [84]. This
is not at all what we observe, and we conclude that the interface localization/delocalization
transition in the double wedge is of first order at the lower temperature ε/kBT = 0.05.

5.3. Critical behaviour in an antisymmetric double wedge

Even though the wetting transition on a planar surface at ε/kBT = 0.025 is of first order,
the behaviour at the interface localization/delocalization transition in an antisymmetric double
wedge at high temperature differs from the first order interface localization/delocalization
transition at low temperature.

To locate the transition temperature, we use the macroscopic criterion for the contact
angle cos � = �γ/γAB = 1/

√
2. Both the interface tension γAB and the difference in the

surface tensions �γ = γWB − γWA can be accurately measured by re-weighting techniques
(see section 3). The interface tension has been extracted from a simulation cell of size L×L×2L
with periodic boundary conditions in all directions. The values of the interface tension do not
strongly depend on the system size: the leading order finite size effects are only of the order
ln L/L2. The difference �γ has been extracted from a symmetric film of width �. The
leading order finite size effect of �γ is larger than the error in γAB and it scales like 1/�.
This finite size effect arises from the finite compressibility and fluid structure of the polymer
melt. In the vicinity of the surfaces, there are fluid-like packing effects that give rise to
oscillations in the monomer density profile. On average, the density in the vicinity of the
surface is slightly smaller than at the centre of the film or wedge. At constant total density
� = (nA + nB)N/(L2�) (as opposed to constant pressure), the density profile across the film
takes the form �(z) ≈ �(1 + c/�)ρ(z), where ρ(z) denotes the normalized density profile
and c ≈ ∫

dz (1 − ρ(z)) > 0. Due to the width dependence of the density, �γ also depends
like εwall(1 + c/�) on the film width. Similar packing-induced effects have been observed
previously in the measurement of the wetting transition temperature [14] and the dependence
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Figure 14. (a) Inset: dependence of the absolute value of the order parameter m ≡ (φA −φB) on the
surface interactions εwall/kBT at the higher temperature ε/kBT = 0.025. Main panel: the values
εwall,cross/kBT (circles) at which the order parameter curves of two neighbouring systems sizes, L1
and L2, intersect are plotted against the inverse system size. The squares represent the location of the
wedge filling transition as determined from the macroscopic condition cos � = �γ/γAB = 1/

√
2.

The system size dependence stems from �γ , which has been extracted from a symmetric film of
width �. The lines represent linear fits to accurately locate the transition of the infinite system at
εwall/kBT = 0.3315. (b) Dependence of the absolute value of the order parameter m ≡ |φA−φB| on
the surface interactions εwall /(1+0.24Re/L)kBT at ε/kBT = 0.025. The inset shows the cumulant.
From the crossing points we can accurately locate the localization/delocalization transition in the
antisymmetric double wedge, εwall/kBT = 0.3315 of the infinite system.

of the critical temperature on the film width in antisymmetric films [15]. To account for this
finite size effect we plot the data in figure 14(a) versus 1/� and estimate the location of the
filling transition at εcrit

wall/kBT = 0.3315.
In the inset of figure 14(a) we present the dependence of the absolute value of the order

parameter, |m| ≡ |φA − φB|, on the surface interaction strength for various system sizes.
Curves that correspond to different system sizes cross in the vicinity of our estimate of the
filling transition, but there is a systematic shift of the crossing point to smaller values of εwall

upon increasing the lateral size L of the wedge. In the main panel, we plot the intersection
points εwall,cross(L1, L2) of neighbouring system sizes L1 and L2 versus 1/

√
L1 L2. Again, the

data fall onto a straight line and the data in the limit L → ∞ are very well compatible with
the estimate of the filling transition from the contact angle measurements in planar geometry.

In the following we account for these packing-induced effects by scaling the monomer–
surface interaction εwall by a factor 1 + 0.24Re/L chosen such that the absolute value of
the magnetization exhibits a common intersection point as a function of ε′

wall ≡ εwall/(1 +
0.24Re/L) as can be seen in figure 14(b). Using the same convention, we present the
dependence of the cumulant on the surface interaction strength for various system sizes in
the inset of the figure. The cumulants depend monotonically on ε ′

wall and exhibit a common
intersection point around ε ′crit

wall/kBT ≈ 0.033 15.
This common intersection point as well as the monotonic behaviour as a function of the

surface interactions is expected for a second order transition [84], and the behaviour of the
cumulant significantly differs from the behaviour at the lower temperature (see figure 13 inset).
In figure 15 we additionally present the probability distribution of the composition φ at this
intersection point: the distribution is bimodal and the largest system sizes collapse onto a
master curve without any size-dependent pre-factor. Therefore we conclude that the interface
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Figure 15. Scaling of the probability distribution P(φ) at our estimate of the critical point,
εwall/kBT = 0.033 15(1 + 0.24Re/L), and various system sizes ranging from 28 000 to 2828 800
lattice sites.

localization/delocalization transition is of second order3 although the wetting transition on a
planar surface at ε/kBT = 0.025 is of first order.

Intriguingly there are also marked differences between this second order transition in an
antisymmetric double wedge and the second order transition in a thin film which belongs to the
two-dimensional Ising universality class. In the latter case, only the distribution of the scaled
order parameter Lβ/νm, where β = 1/8 and ν = 1 are the critical exponents of the order
parameter and the correlation length of the two-dimensional Ising universality class, exhibits
data collapse for different system size. Moreover, as shown in figure 14, curves of the absolute
value of the order parameter for different system sizes exhibit a common intersection point
which agrees well with the intersection point of the cumulants. The analogous curves for an
Ising model do not exhibit a common intersection point but monotonically converge towards
〈|m|〉 ∼ |T − Tc|β for T < Tc and 〈|m|〉 ≡ 0 for T � Tc upon increasing the system size.

To relate the critical behaviour of the antisymmetric double wedge to the predictions of
Parry et al [82], we regard the distance l0 of the AB interface from the corner of one wedge.
Similarly to an antisymmetric film (see section 4.1), we assume that we can approximate
the distribution in a double wedge by the superposition of the distributions of single wedges
Pwedge(l0) via P(l0) ∼ Pwedge(l0) + Pwedge(

√
2L − l0). If the two distributions Pwedge(l0)

and Pwedge(
√

2L − l0) do not overlap, the AB interface will be located in either of the two
wedges and the order parameter will not vanish. If the two distributions overlap, the interface
fluctuates around the diagonal and the order parameter will be zero. Right at the transition the
two distributions begin to overlap:

〈l0〉 + ξ⊥
!= √

2L − 〈l0〉 − ξ⊥ (interface localization/delocalization in double wedge)

(21)

3 The interface localization/delocalization transition might be of second order in a very thin antisymmetric film
(see section 4.2) even if the wetting transition is of first order. Therefore still larger system sizes would be desirable
to confirm this conclusion. We note, however, that the thickness of the enrichment layer at the first order wetting
transition of the planar substrate (ε/kBT = 0.0226, εwet

wall/kBT = 0.04) is only l0 ≈ 0.24Re � 3.33Re = L/
√

2.
Therefore we believe that our conclusion is not affected by finite size effects.
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where 〈l0〉 denotes the mean height in a single wedge and ξ⊥ its fluctuations. Importantly,
Parry’s prediction of β0 = ν⊥ in wedges (and also corners [85]) means that the height and its
fluctuations are of the same order. They diverge as we approach the critical filling transition.

The height of the interface l0 is related to the order parameter m of the
localization/delocalization transition. Therefore we expect the distribution of the order
parameter also to be bimodal. As l0 ∼ ξ ∼ L at the transition and the order parameter
is a function of l0/L, the distribution of the order parameter will exhibit two peaks whose
positions and widths will not depend on the system size. This is exactly what we observe in
figure 15. Using this observation and the standard finite size scaling assumption at a second
order phase transition

P(m) ∼ Lβ/ν⊥ P̃(Lβ/ν⊥ m, L/ξ⊥, L y/ξy) ∼ Lβ/ν⊥P(Lβ/ν⊥m, L1/ν⊥ t, η) (22)

where P̃ andP are scaling functions, t = (T −Tf)/Tf denotes the relative distance to the filling
transition, and η ≡ L y/Lνy/ν⊥ = L y/L3 denotes the generalized aspect ratio, we conclude
that β/ν⊥ = 0. Due to the anisotropy of the fluctuations of the interface along the wedge
with correlation length ξy and perpendicular to the wedge with correlation length ξ⊥, the
generalized aspect ratio appears as a scaling variable. In our simulations we have chosen the
system geometry such that η remains approximately constant, η = 8.6 × 10−4, to ensure that
the finite-size rounding in the direction along the wedge and the rounding in the two other
directions sets in simultaneously4. Hence, the scaling of the probability distribution not only
confirms β = 0 but also the ratio νy = 3ν⊥.

Knowing the probability distribution of the order parameter we can calculate all of its
moments:

〈mk〉 = Mk(L1/ν⊥ t, η) (23)

where Mk are scaling functions. A consequence of the absence of any L-dependent pre-
factor in equation (23) is the common intersection of moments of the order parameter at the
transition. Again this is in agreement with our observation in figure 13(b). As this intersection
involves only the lowest moment of the order parameter it yields an accurate estimate of
the location of the critical interface localization/delocalization transition in an antisymmetric
double wedge. As a special case of equation (23), we calculate the susceptibility of the order
parameter: χ = L2 L y〈m2〉/kBT ∼ L2 L yM̃2(L/ξ⊥, L y/ξy) ∼ ξ2

⊥ξy ∼ t−2ν⊥−νy ≡ t−γ

with γ = 2ν⊥ + νy = 5/4. Gratifyingly, these values for the exponents comply with the
anisotropic hyperscaling relation [86] γ + 2β = (d −1)ν⊥ +νy. Using thermodynamic scaling
2 − α = γ + 2β we also infer the critical exponent α = 3/4 for the specific heat.

The scaling behaviour of the susceptibility is shown in figure 16. By plotting the
fluctuations 〈m2〉 − 〈|m|〉2 versus the scaling variable L1/ν⊥ (ε ′

wall − ε ′crit
wall) we confirm the

exponents β = 0 and ν⊥ = 1/4. From the divergence upon approaching the critical point, we
read off the exponent γ . The data for the localized branch (ε′

wall → ε ′crit+
wall ) are well compatible

with the prediction γ = 5/4. Similarly to the simulations of Ising systems [22], however, it
seems much more difficult to observe the critical exponent upon approaching the transition
from the delocalized state. One reason for this difficulty is the rather small value of η and the
rather broad critical distribution (see figure 15). The broadness of the distribution (i.e., the fact
that the peaks are located close to m = ±1 or that the distance l0 of the AB interface from the
bottom of the wedge is a small, but finite, fraction of the system size L) implies that the AB
interface in the localized state (ε′

wall < ε ′crit
wall) is closely bound to the bottom of the wedge and

microscopic details become important for the system sizes accessible to MC simulations.

4 If we kept the ratio L y/L constant η → 0 and the system would exhibit a behaviour characteristic of a corner. In
the limit L fixed but L y → ∞ the wedge becomes quasi-one-dimensional and there is no transition [22].
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Figure 17. The probability distribution of the composition in an antisymmetric film with system
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to the wetting transition and the filling transition (according to Young’s equation).

It is interesting to relate the observation of first and second order interface
localization/delocalization transitions in a double wedge to the shape of the interface potential.
Parry et al predict [82] that the filling transition is second order if the interface potential
between an AB interface and a planar surface does not exhibit a free energy barrier between
the minimum close to the surface and the behaviour at large distances, i.e., if a macroscopically
thick layer is not even metastable.

In figure 17 we present the interface potential obtained from the probability distribution of
the composition in a simulation of an antisymmetric film at ε/kBT = 0.025. In the vicinity of
the wetting transition the interface potential exhibits a maximum between the minimum close
to the surface and the value at large distances. This fact confirms that the wetting transition
is of first order. At the smaller value of εwall, however, there is no such maximum within the
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statistical uncertainty of the MC data and, in agreement with Parry’s predictions, we observe
a second order transition in the double wedge.

6. Summary

We have investigated the interplay between wetting and phase separation of incompressible
binary mixtures confined in thin films and wedges. In our polymer model, the wetting transition
if of first order, and we can accurately locate it via Young’s equation [14]. The concomitant
pre-wetting behaviour modifies the phase boundaries in thin films [13]. If both surfaces attract
the same component, capillary condensation occurs, and the critical point is close to the critical
unmixing transition in the bulk. If one surfaces attracts the A-component but the other attracts
the B-component an interface localization/delocalization transition occurs. In this case there
are two critical points which correspond to the pre-wetting critical points at each surface. If
the film width is very small, however, the interface localization/delocalization transition might
be of second order even if the wetting transition is of first order. The critical points in a thin
film are characterized by Ising critical behaviour.

In analogy to the interface localization/delocalization in an antisymmetric film, we have
studied the transition in an antisymmetric double wedge and we relate the phase behaviour
to the filling transition in a single wedge. Importantly we present evidence that the analogy
of critical filling in an antisymmetric double wedge geometry gives rise to unconventional
critical behaviour characterized by an order parameter exponent β = 0 and strong anisotropic
fluctuations [22]. We can relate the critical exponents to the predictions of Parry et al [82]
on critical filling. In agreement with those predictions, the filling transition can be critical
even though the wetting transition on a planar substrate is of first order. This is practically
important because there is no experimental realization of critical wetting on a solid substrate.
Our findings suggests the polymer blends might be promising candidates for exploring the
wetting and filling behaviour experimentally.

Acknowledgments

It is a great pleasure to thank E V Albano, D P Landau and A Milchev for fruitful collaborations
and J M Romero-Enrique, S Dietrich, A O Parry for stimulating discussions. Financial support
by the DFG under grants Bi314/17 (1-3) within the priority program ‘Wetting and structure
formation at interfaces’, Mu 1674/1-1 (Heisenberg fellowship), and DAAD/PROALAR 2000
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